Abstract

Parallel computing is a rapidly growing field due to its extreme performance boosts when
dealing with large amounts of data. General purpose computing on graphics processing
units (GPGPU) allows programmers to utilize GPUs to exploit parallelism in CPU code. In
this thesis, we present a system that automatically transcompiles source C code into CUDA
code, which can be executed on a GPU. Unlike other similar systems, our transcompiler is a
complete end-to-end system capable of handling certain while loops and imperfectly nested
for loops. We tested our system on a variety of computationally expensive applications

and achieved immense computational speedups and decent overall speedups.



	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	General Purpose Computing on GPUs
	CUDA
	Programming Model
	Memory Model

	Affine Transform Theory
	Array Accesses
	Multidimensional Spaces and Mappings

	Dependency Analysis
	Data Dependencies
	Dependence Vectors and Graphs
	ZIV Test
	GCD Test
	Banerjee's Test

	Source-Code Transformations
	Loop Fission
	Extended Cycle Shrinking

	ROSE Compiler Framework

	Related Works
	Parallel FORTRAN Converter
	Automatic C-to-CUDA Code Generation
	CUDA-CHiLL
	APTCC
	CRINK
	Improved CRINK

	System Description
	Overview
	Preprocessing
	Loop Nest Conversion
	Normalization
	Affinity Testing

	Dependency Testing
	Code Generation
	Simple Parallelization
	Extended Cycle Shrinking


	System Evaluation
	Testing Environment
	Benchmarks
	Results

	Conclusions and Future Work
	Benchmark Code Listings
	circle_rule
	dft
	matrix_addition
	matrix_transpose
	numerical_integration
	rgb2gray

	Bibliography



