Abstract

Parallel computing is a rapidly growing field due to its extreme performance boosts when
dealing with large amounts of data. General purpose computing on graphics processing
units (GPGPU) allows programmers to utilize GPUs to exploit parallelism in CPU code. In
this thesis, we present a system that automatically transcompiles source C code into CUDA
code, which can be executed on a GPU. Unlike other similar systems, our transcompiler is a
complete end-to-end system capable of handling certain while loops and imperfectly nested
for loops. We tested our system on a variety of computationally expensive applications

and achieved immense computational speedups and decent overall speedups.
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